Math 4550 - Homework # 1 - Groups

Part 1 - Computations

- (a) Calculate the group table for Z₂, and (b) find the inverse of each element in Z₂.
- (a) Calculate the group table for Z₄, and (b) find the inverse of each element in Z₄.
- 3. (a) List the elements of \mathbb{Z}_6 , and (b) find the inverse of each element of \mathbb{Z}_6 .
- 4. (a) Draw a picture of U_4 , (b) calculate the group table for U_4 , and (c) find the inverse of each element in U_4 .
- 5. (a) Draw a picture of U_6 , and (b) find the inverse of each element in U_6 .
- 6. (a) List the elements of D_6 , (b) calculate the group table for D_6 , and (c) find the inverse of each element in D_6 .
- 7. (a) List the elements of D_8 , (b) calculate rsr^3 and $(sr^3)(sr^2)$ and $r^2r^3srsr^{-2}$, and (c) find the inverses of the elements r, r^2, sr , and sr^2 .
- 8. For each A and B, verify that A and B are in $GL(2,\mathbb{R})$. Then calculate A^{-1} , B^{-1} and AB.

(a)
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1/2 & 5 \end{pmatrix}$ (b) $A = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$

Part 2 - Proofs

<u>Note</u>: For abstract groups I'm using a * b in the problems below. After this HW we will drop this notation and just write ab like we are doing in class

- 9. In D_{2n} prove that $(sr^k)^{-1} = sr^k$.
- 10. Let G be a group and let $a, b, c \in G$. Prove that if a * b = a * c, then b = c.
- 11. Let G be a group where every element is it's own inverse. Prove that G is abelian.
- 12. Consider $\mathbb{Z}_{10} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}.$
 - (a) Show that \mathbb{Z}_{10} is not a group under multiplication.

- (b) Consider the subset $G = \{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ of \mathbb{Z}_{10} . Show that G is a group under multiplication. State what the identity element is and the inverses of each element.
- 13. Show that $\mathbb{Z} \{0\}$ is not a group under multiplication.
- 14. Let \mathbb{R}^+ denote the set of all positive real numbers. Show that \mathbb{R}^+ is not a group under the operation $a * b = \sqrt{ab}$.
- 15. Prove that $\mathbb{R} \{-1\}$ is a group under the operation a * b = a + b + ab. For example, 5 * (-2) = 5 + (-2) + (5)(-2) = -7.
- 16. Let G be an abelian group and $a, b \in G$. Prove by induction that $(a * b)^n = (a^n) * (b^n)$ for all positive integers n.